skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anglès, Sílvia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study evaluated water quality, nitrogen (N), and phytoplankton assemblage linkages along the western Long Island Sound (USA) shoreline (Nov. 2020 – Dec. 2021) following COVID-19 stay-in-place (SIP) orders through monthly surveys and N-addition bioassays. Ammonia-N (AmN; NH3+NH4+) negatively correlated with total chlorophyll-a (chl-a) at all sites; this was significant at Alley Creek, adjacent to urban wastewater inputs, and at Calf Pasture, by the Norwalk River (Spearman rank correlation, p<0.01 and 0.02). Diatoms were abundant throughout the study, though dinoflagellates (Heterocapsa, Prorocentrum), euglenoids/cryptophytes, and both nano- and picoplankton biomass increased during summer. In field and experimental assessments, high nitrite+nitrate (N+N) and low AmN increased diatom abundances while AmN was positively linked to cryptophyte concentrations. Likely N+N decreases with presumably minimal changes in AmN and organic N during COVID-19 SIP resulted in phytoplankton assemblage shifts (decreased diatoms, increased euglenoids/cryptophytes), highlighting the ecological impacts of N-form delivered by wastewater to urban estuaries. 
    more » « less